R & Quarto: Elevating Research Transparency

David Brocker

Roadmap

  1. Research
  2. Teaching
  3. Service
  4. Documentation
  5. Fun

Research

  1. Example
  2. Import Data

Import Data

# Read and Clean Data
 mcu <- read_excel("UpdatedMCdata.xlsx")

Import Data

# Read and Clean Data
 mcu <- read_excel("UpdatedMCdata.xlsx")
# Clean
 mcu_cln <- 
  mcu %>% 
  # Get participants who finished 
  filter(Finished == "1") %>% 
  # Get participants who consented 
  filter(`Consent?` == "1") %>% 
  # Remove unneeded columns 
  select(-DistributionChannel,-UserLanguage) %>% 
  # Clean variable names 
  rename_with(~gsub(" ","_",.x)) %>% 
  # Make Score Columns numeric 
  mutate_at(vars(SC0:SC14),as.numeric) %>% 
  # Remove SC0 and replace with scale name 
  rename( 
    Morbid_Curiosity_Overall = SC0, 
    Mind = SC1, 
    Body = SC2, 
    Violence = SC3,
    Paranormal = SC4, 
    Horror_Typology_Overall = SC5, 
    AJ = SC6, 
    WK = SC7, 
    DC = SC8, 
    Trait = SC9, 
    State_Pre = SC10, 
    Positive_Choice = SC11,
    Negative_Choice = SC12,
    PN_Choice = SC13, 
    State_Post = SC14) |>
  mutate(
    # Divide all MC Total Score by 24
    Morbid_Curiosity_Overall = Morbid_Curiosity_Overall/24,
    # Divide all HT Total Score by 19
    Horror_Typology_Overall = Horror_Typology_Overall/19 ) |>
    # Divide each MC Subscale Item by 6
    mutate_at(vars(Mind:Paranormal),scale_six) |> 
    # Divide each HT Subscale Item by 6
    mutate_at(vars(AJ:DC),scale_seven)

Import Data

# Subset Scales
 mc_scale <- 
  mcu_cln |> 
  select(Morbid_Curiosity_Overall:State_Post)

Visualize Data

Clean Data

  1. Identify any nonstandard naming conventions (tOgglECase, Spaces in Name, etc.)

  2. Clean with Regular Expressions 1 or janitor

Name Cleaning

mcu |> names()
[1] "StartDate"             "EndDate"               "Status"               
[4] "Progress"              "Duration (in seconds)" "Finished"             
mcu |> 
clean_names() |> 
  names()
[1] "start_date"          "end_date"            "status"             
[4] "progress"            "duration_in_seconds" "finished"           

Exploratory Data Analysis

  1. Visualize Possible Relationships
mcu_cln |> 
  select(where(is.numeric)) |> 
  pairs()

Exploratory Data Anlaysis

  1. Scan for possible outliers
mcu_cln |> 
  select(where(is.numeric)) |> 
  boxplot()

Teaching

  1. Example
  1. Include Interactivity

  2. Match Formatting

  3. \(M = \Sigma\frac{x}{n}\)

  4. Build Testing Materials

Service

  1. Evaluate Data

Internship Placements

  1. Present Findings

  2. Present Solutions

Emphasize Certain Areas

Direct Students to Specific Sites

Documentation

  1. Convert ‘static’ Documents

** Put Picture of PDF Manual Here **

  1. Update and Modernize

Fun

  1. Data is fun!